2 research outputs found

    An Adaptive Software Fault Tolerant Framework for Ubiquitous Vehicular Technologies

    Get PDF
    Probability for the occurrence of faults increases manifolds when program Lines of Code (LoC) exceeds a few thousand in ubiquitous applications. Faults mitigation in ubiquitous applications, such as those of autonomous Vehicular Technologies (VTs), has not been effective even with the use of formal methods. Faults in such applications require exhaustive testing for a timely fix, that seems infeasible computationally. This emphasizes the imperative role of Software Fault Tolerance (SFT) for autonomous applications. Several SFT techniques have been proposed but failures revealed in VT applications imply that existing SFT techniques need to be fine-tuned. In this paper, current replication-based SFT techniques have been analyzed and classified with respect to their diversity, adjudication, and adaptivity. Essential parameters (such as Reliability, Time, Variance, etc) for adjudication, diversity, and adaptiveness were recorded. The identified parameters were mapped to different techniques (such as AFTRC, SCOP, VFT, etc) for observing their shortcomings. Consequently, a generic framework named ”Diverse Parallel Adjudication for Software Fault Tolerance (DPA-SFT)” has been proposed. DPA-SFT addresses the shortcomings of existing SFT techniques for VTs with the added value of parallel and diverse adjudication. A prototype implementation of the proposed framework has been developed for assessing the viability of DPA-SFT over modules of VT. An empirical comparison of the proposed framework was performed with prevalent techniques (AFTRC, SCOP, VFT, etc). A thorough evaluation suggests that DPA-SFT performs better than contemporary SFT techniques in VTs due to its parallel and diverse adjudication

    A Context-aware and Intelligent Framework for the Secure Mission Critical Systems

    Get PDF
    Recent technological advancements in pervasive systems have shown the poten-tial to address challenges in the military domain. Research developments in mili-tary-based mission-critical systems have refined a lot as in autopilot, sensing true target behavior, battle damage conditions, acquiring and manipulating command control information. However, the application of pervasive systems in the military domain is still evolving. In this paper, an intelligent framework has been pro-posed for mission-critical systems to incorporate advanced heterogeneous com-munication protocols; service-oriented layered structure and context-aware infor-mation manipulation. The proposed framework addresses the limitation of “time-space” constraints in Mission-critical systems that have been improved signifi-cantly. This improvement is courtesy to enhancing situation-aware tactical capa-bilities such as localization, decision significance, strategic span, strategic inten-tions, resource coordination and profiling concerning the situation. A comprehen-sive use case model has been presented for a typical battle-field scenario followed by a comparison of the proposed framework with existing techniques. It is evi-dent from experiments and analyses that the proposed framework provides more effective and seamless interaction with contextual resources to improve tactical capabilities. This is the peer reviewed version of the following article: A Context-aware and Intelligent Framework for the Secure Mission Critical Systems, which has been published in final form in Transactions on Emerging Telecommunications Technologies. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Version
    corecore